无理数的风波
时间: 2017-06-06
无理数的风波
无理数就是不能表示为整数或整数之比的实数,如√2、π等等 。这些数不像自然数或负数那样,可在实际生活中直接碰到,它是在数学计算中间接发现的。
人们发现的第一个无理数是√2 。据说,它的发现还曾掀起一场巨大的风波。古希腊毕达哥拉斯学派是一个研究数学、科学、哲学的一团一体,他们推崇比例论,即认为一切数都是整数或者是整数之比。有一个名叫希帕蒂斯的学生,在研究1和2的比例中项时,左思右想都想不出这个中项值。后来他画一边长为1的正方形,设对角线为χ,于是根据毕达哥拉斯定理:
χ×χ=1×1+1×1=2。他想:χ代表正方形对角线长,而χ×χ=2,那么χ必定是确定的数。但它是整数还是分数呢? 他证明χ不能是整数,因1×1=1, 2×2=4, χ×χ=2,χ必定大于1而小于2,1与2之间却没有别的整数。那么χ会不会是分数呢? 毕达哥拉斯和他的学生们绞尽脑汁也找不到这个分数。
这样,如果χ既不是整数又不是分数,就与毕达哥拉斯学派的信条有了矛盾。于是许多人都否定这个数的存在。而希帕索斯等人却认为这必定是一个新数。这一发现,使得毕达哥拉斯学派的“比例论”动摇了,从而导致了西方数学史上的第一次 “数学危机 ”。而希帕索斯本人因违背了“比例论”的信条而受到处罚,被扔到大海里淹死了。
无理数的发现,使数的概念又扩展了一步。