染色体
染色体在细胞分裂之前才形成。在细胞的代谢期或间期,染色体分散成一级结构或伸展开的DNA分子,组成细胞核内的染色质或核质。 染色体的形态以中期时最为典型。每条染色体由两条染色单体组成,中间狭窄处称为着丝粒(centromer),又称主缢痕,它将染色体分为短臂(p)和长臂(q)。按着丝粒位置的不同,人类染色体可分为中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体等3种类型。近端着丝粒染色体的短臂末端有一个叫做随体的结构,它呈圆球形,中间以细丝与短臂相连。有的染色体长臂上还可看到另一些较小的狭窄区,称为次缢痕。染色体臂的末端存在着一种叫做端粒(telomer)的结构,它有保持染色体完整性的功能。 现代关于染色体超微结构的概念.染色体的超微结构显示染色体是由直径僅100埃(?)的DNA-组蛋白高度螺旋化的纤维所组成。每一条染色单体可看作一条双螺旋的DNA分子。有丝分裂间期时,DNA解螺旋而形成无限伸展的细丝,此时不易为染料所着色,光镜下呈无定形物质,称之为染色质。有丝分裂时DNA高度螺旋化而呈现特定的形态,此时易为碱性染料着色,称之为染色体。1970年后陆续问世的各种显带技术对染色体的识别作出了很大贡献。中期染色体经过DNA变性、胰酶消化或荧光染色等处理,可出现沿纵轴排列的明暗相间的带纹。按照染色体上特征性的标志可将每一个臂从内到外分为若干区,每个区又可分为若干条带,每条带又再分为若干个亚带,例如“9q34.1”即表示9号染色体长臂第3区第4条带的第1个亚带。由于每条染色体带纹的数目和宽度是相对恒定的,根据带型的不同可识别每条染色体及其片段。80年代以来根据DNA双链互补的原理,应用已知序列的DNA探针进行荧光原位杂一交一(Fluorescence in situ hybridization,FISH)可以识别整条染色体、染色体的1个臂、1条带甚至一个基因,因而大大提高了染色体识别的准确性和敏一感性。染色体是遗传物质—基因的载体,控制人类形态、生理和生化等特征的结构基因呈直线排列在染色体上。2000年6月26日人类基因组计划(HGP)已宣布完成一人类基因组序列框架图。2001年2月12日HGP和塞雷拉公司公布了人类基因组图谱和初步分析结果。人类基因组共有3~3.5万个基因,而不是以往认为的10万个。由此可见,染色体和基因二者密切相关,染色体的任何改变必然导致基因的异常。染色体的主要化学成份是脱氧核糖核酸(DNA)和5种称为组蛋白的蛋白质。核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。现在我们知道,DNA分子具有典型的双螺旋结构,一个DNA分子就像是一条长长的双螺旋的飘带。一条染色体有一个DNA分子。DNA双螺旋依次在每个组蛋白8聚体分子的表面盘绕约1.75圈,其长度相当于140个碱基对。组蛋白8聚体与其表面上盘绕的DNA分子共同构成核小体。在相邻的两个核小体之间,有长约50~60个碱基对的DNA连接线。在相邻的连接线之间结合着一个第5种组蛋白(H1)的分子。密集成串的核小体形成了核质中的100埃左右的纤维,这就是染色体的“一级结构”。在这里,DNA分子大约被压缩了7倍。 染色体的一级结构经螺旋化形成中空的线状体,称为螺线体或核丝,这是染色体的“二级结构”,其外径约300埃,内径100埃,相邻螺旋间距为110埃。螺丝体的每一周螺旋包括6个核小体,因此DNA的长度在这个等级上又被再压缩了6倍。 300埃左右的螺线体(二级结构)再进一步螺旋化,形成直径为0.4微米(μm)的筒状体,称为超螺旋体。这就是染色体的“三级结构”。到这里,DNA又再被压缩了40倍。超螺旋体进一步折叠盘绕后,形成染色单体—染色体的“四级结构”。两条染色单体组成一条染色体。到这里,DNA的长度又再被压缩了5倍。从染色体的一级结构到四级结构,DNA分子一共被压缩了7×6×40×5=8400倍。例如,人的染色体中DNA分子伸展开来的长度平均约为几个厘米,而染色体被压缩到只有几个微米长。